The path toward augmented reality with Renesas R-Car family

January 08, 2015 //By Simon Oudin, Renesas Electronics Europe
The path toward augmented reality with Renesas R-Car family
The combination of powerful 3D graphics, outstanding computer vision capabilities and optimized video capture to form single chip SoC solutions is key to the success of future parking assistance solutions that include surround view systems using multiple cameras. The second SoC generation from Renesas, called R-Car, aims at providing the appropriate solution to enable ready to use advanced 3D surround view applications and offer the driver an immersive and safe experience.


Surround view monitoring will become a common functionality in cars. This feature is part of the parking assistance system. From a niche market first driven by Asian car makers, it has become an option offered by the majority of car manufacturers, with the consequence of a higher requirement in terms of driver experience and solution scalability. Renesas, as a lead SoC vendor for infotainment and ADAS applications, is already a major player for supporting surround view requirements in their early phase. Today, Renesas provides a new generation of SoC to answer global market needs with a scalable and innovative approach.

Surround View with R-Car Gen2 Familie

The purpose of surround view monitoring is to display a panoramic view of the car's immediate surroundings. This representation, at 360 degrees with 2D perspective from the sky, is called “bird view” or “top view”. The different views are stitched together thanks to the correct geometric alignment of the cameras. The brightness and colour of the different cameras’ videos are modified for the harmonization of the surround view [1] [2].

Nevertheless, displaying only this representation does not generally help the driver during the parking process. To facilitate this manoeuvre, additional information can be shown to the driver as 2D overlays or rear view [1]. A complementary approach is to improve the driver apprehension of the distances with a 3D representation of the car’s surroundings. The target is to use 2D cameras around the car to create a 3D comprehensive representation of its immediate vicinity with a 3D generated car as a driver perspective reference. It should reflect a realistic representation of the distances to nearby elements (pedestrians, cars and buildings). The 3D sphere perspective should dynamically change according to the car movement. The model car has to be properly integrated in the overall scene with light or reflection on the model car [2].

This level of application drives the performance required in terms

Design category: 

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.